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Abstract

The free scalar field is studied on the Y-junction of three semi-infinite axes
which is the simplest example of a non-manifold space. It is shown that the
transition rules for this system uniquely follow from conservation of energy
and charge. A discrete version of the model gives the same result.

PACS numbers: 45.20.Jj, 11.55.Bq

1. Introduction

Hamiltonian mechanics on manifolds now is practically completed [1, 2], but there appeared
a serious need for the formulation of mechanics not on manifolds. The problems arise both
in nanoelectronics and string theory. For example, three quantum wires with a Y junction do
not compose a manifold (the vicinity of the junction is not homeomorphic to some domain in
Euclidean space). Moreover, one can compose a network of strings [3, 4] which also is not a
manifold. It is extremely important to have the Hamiltonian formalism on such structures. In
nanoelectronics: to describe motion of electrons; in string theory: to model space [4].

There is no regular theory of such processes. The best way to find the solution of a
complex problem is to consider the simplest case possessing all its essential features. As the
first step to this end, a 3-tail system may be studied, i.e., the Y junction of three semi-infinite
sets of classical harmonic oscillators related to a theory of a free classical scalar field on such
a 3-ray star.

Usually more serious problems arise when one turns to a quantum description even in the
manifold case. Quantum mechanics (QM) can be deduced from classical mechanics only in
the Euclidean space (this Dirac’s recipe was confirmed by experiments). Even curved spaces
cause serious difficulties. There are two points of view in this case.

(1) The curved space is considered as that embedded into the flat space, and one has to
consider dynamics with constraints.

(2) QM should be deduced from its classical counterpart without using the embedding space.

These are two principally differing approaches, but none of these gives a unique recipe.
In case (1), there are the following recipes:
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(i) the Dirac method (modification of the Poisson brackets) [5];
(ii) the conversion method [6, 7];

(iii) the thin-layer method [8]; and
(iv) the reduction method [9, 10].

The Dirac recipe is not unambiguous [11]. The result depends even on the way one
parameterizes the curved space [12]. In case (ii), the authors increase the number of unphysical
variables. Approaches (i) and (ii) give different results [11]. In both cases, it is assumed that
in QM the unphysical degrees of freedom cannot influence the physical dynamics. That is
correct only in the classical theory. In recipe (iii), one approximates the motion on a surface
by motion on a thin layer. This looks reasonable. In method (iv), one excludes the normal to
the surface motions demanding

P̂ ⊥ψph = 0, (1)

where P̂ ⊥ is normal to the surface momentum and ψph is a state vector from the physical
Hilbert space. Methods (iii) and (iv) give the identical results [13], but the latter allows one to
avoid rather cumbersome calculations. As for case (2), QM cannot be deduced unambiguously
from classical mechanics, because there are a lot of QM giving h̄ → 0 the same classical limit
[14].

Wave scattering in thin tubes and associated theory of quantum graphs were actively
studied in the last decade (see [15–19] and especially in the excellent paper [20]). Most
publications on this subject are concerned with analytical properties of the corresponding
solutions. However, several underlying physical principles were not discussed in full. The
present paper is especially devoted to elucidate the role of basic physical principles.

Returning to our problem (the formulation of QM not on a manifold, e.g. on three semi-
infinite straight lines having one common point), we note that we do not know any regular
investigation of the problem. It turns out that in this case it is reasonable to reverse the
standard approach (classical mechanics → quantum mechanics) and begin with fields (or
wavefunctions). Really, formulating new theory one should, from the very beginning, assume
some inalienable principles. If one looks for theories conserving energy and charge, then the
corresponding conditions should be postulated. It turns out that it is more natural to do this
working with fields. In this framework, the conservation laws lead to the translation rules at
the junction point, manifesting the fact that the physical space is not a manifold. Therefore,
the classical Hamiltonian mechanics not on a manifold follows from QM. Paradoxically, even
this reasoning can be reversed if one considers a free relativistic field as a continuous limit
of an ordered set of harmonic oscillators. In this framework, one can readily formulate the
corresponding Hamiltonian mechanics. Coincidence between the continuous limit of this
theory and the primary one confirms the sensibility of our general approach.

We also found that the junction plays the role of a potential (scatterer). The corresponding
scattering amplitudes are calculated. Actually, in this context, our problem may be considered
from both classical and quantum points of view. Indeed in spaces of this type, the scattering
of a complex classical free relativistic field is, in fact, identical to the scattering of a particle
in relativistic QM.

Within our model, the scattering amplitudes do not depend on the angles between the
rays, because there is no special reason for such dependence. Indeed, the dynamics may be
modeled by the sets of harmonic oscillators, vibrating in the direction orthogonal to the plane
embedding the ‘star’ (i.e. it is supposed that all the rays belong to the plane). What about
the ‘junction oscillator’? It is assumed that its oscillations do not depend on the angles between
the rays.
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The importance of this problem for strings is self-evident. Gradually, it becomes clear that
at the Planck scales, matter manifests itself in the form of strings. Polymers and nanostructures
are important for modern technologies. Study of strings is of special interest, also because a
3D network of superstrings can model the physical spacetime at the Planck scales, and one
should know how to describe the propagator of excitations over the structure. Besides, it opens
the way to the unification of all interactions, including gravitation [4, 10].

It is worth noting that for three waves coming from different rays, the junction point plays
the role of a three-particle potential. It is significant that the latter can not be reduced to a sum
of two-particle ones. In this sense, the 3-tail problem may be considered as an analog to the
three-body scattering problem in QM.

The paper is organized as follows. In section 2, we briefly discuss the model. In section 3,
we obtain an exact form of S-matrix from the conservation of energy and charge. Section 4 is
devoted to the corresponding discrete model.

2. General properties of S-matrix

Consider a complex scalar field, ϕ, defined on three strings with the spatial coordinates
x ∈ [0,∞), y ∈ [0,∞) and z ∈ [0,∞). The junction point corresponds to x = y = z = 0.
On each string, the field ϕ satisfies the Klein–Fock–Gordon equation (we take h̄ = 1, c = 1),

∂2ϕ

∂t2
= ∂2ϕ

∂q2
− m2ϕ, q = x, y, z, q > 0. (2)

Our purpose is to obtain a global solution defined on the whole structure. Firstly, we demand
that it is continuous at the junction point

lim
x→0

ϕ(x) = lim
y→0

ϕ(y) = lim
z→0

ϕ(z). (3)

This condition was postulated, in particular, also in [21] together with the following one:

∂xϕ|x=0 + ∂yϕ|y=0 + ∂zϕ|z=0 = 0, (4)

but its physical meaning (in connection with the problem of the formulation of mechanics
not on a manifold) was not investigated. In the present paper, we show that together with (3)
condition (4) guarantees both the energy and the charge conservation for our system.

The solutions of equation (2) on strings satisfy the superposition principle. It is natural
to begin the investigation with the study of a monochromatic wave propagating from x = ∞,

ϕ(k, x, t) = e−i(ωt+kx) + R(k) e−i(ωt−kx),

ϕ(k, y, t) = Ty(k) e−i(ωt−ky), ϕ(k, z, t) = Tz(k) e−i(ωt−kz).
(5)

Here, R(k) and T (k) are correspondingly the reflection and transition coefficients, while

ω2 = k2 + m2, ω � m. (6)

The incoming particle has momentum k > 0.
According to (3), Ty(k) = Tz(k) = 1 + R(k). A unitarity condition,

|R(k)|2 + 2|R(k) + 1|2 = 1, (7)

is proved in the following section. According to it, the coefficient R(k) may be parameterized
as

R(k) = 1
3 eiθ(k) − 2

3 . (8)
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3. S-matrix and conservation of energy and charge

Equation (2) on a line follows from the Lagrangian

L = ∂0ϕ̄∂0ϕ − ∂1ϕ̄∂1ϕ − m2ϕ̄ϕ, (9)

where ∂0 and ∂1 denote differentiations with respect to time and spatial coordinate q
respectively. The energy–momentum tensor of the field is given by the general formula
[22]

T ij = ∂L
∂(∂iϕ)

∂jϕ +
∂L

∂(∂i ϕ̄)
∂j ϕ̄ − gijL. (10)

Here gij is the Minkowski tensor gij = diag(1,−1) and the derivatives ∂j are related to ∂j by
∂i = gij ∂j . Using (9), we obtain

T 00 = ∂0ϕ̄∂0ϕ − ∂1ϕ̄∂1ϕ + m2ϕ̄ϕ, T 10 = −(∂1ϕ̄∂0ϕ + ∂0ϕ̄∂1ϕ). (11)

The energy–momentum conservation follows from the equation

∂iT
ij = 0. (12)

According to (12), the energy in a segment q1 � q � q2:

E(q1, q2) =
∫ q2

q1

T 00(q) dq (13)

satisfies the relation
dE(q1, q2)

dt
= T 10(q1) − T 10(q2). (14)

For system (9) on a line with boundary conditions ϕ(±∞) → 0 equation (14) results in
the conservation of energy E(−∞,∞) = const. Postulating the energy conservation for the
system on the Y-junction, we obtain from (14) the following condition:

T 10(x)|x→0 + T 10(y)|y→0 + T 10(z)|z→0 = 0, (15)

or, according to (11) and (12),

∂t ϕ̄(∂xϕ + ∂yϕ + ∂zϕ) + (∂xϕ̄ + ∂yϕ̄ + ∂zϕ̄)∂tϕ|x=y=z=0 = 0. (16)

Although this condition is weaker than (4), it puts a strong enough restriction on
the function R(k). Substituting into (16) the monochromatic solution (5), we obtain the
unitarity condition (7). However, equation (16) must also be true for superposition of several
monochromatic waves with different k or, equivalently, for the sum

ϕin(x, t) =
∑

k

a(k) e−i(ωkt−kx). (17)

Then in equation (16), interference terms appear. Since expression (11) for T 10 is bilinear with
respect to ϕ and ϕ̄, the crossing terms originate from two monochromatic waves with different
frequencies. Therefore, in order to obtain the corresponding restrictions on the function R(k),
it is sufficient to study the two-mode solution

ϕ(k1, k2, x, t) = e−i(ωk1 t+k1x) + R(k1) e−i(ωk1 t−k1x) + e−i(ωk2 t+k2x) + R(k2) e−i(ωk2 t−k2x),

ϕ(k1, k2, y, t) = (1 + R(k1)) e−i(ωk1 t−k1y) + (1 + R(k2)) e−i(ωk2 t−k2y), (18)

ϕ(k1, k2, z, t) = (1 + R(k1)) e−i(ωk1 t−k1z) + (1 + R(k2)) e−i(ωk2 t−k2z).

We have assumed here that the wave vectors do not change after the scattering.
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Substituting (18) into (16) and extracting the constant terms, we obtain equation (7).
However, the terms proportional to ei(ωk1 −ωk2 )t give the following condition:

ωk1k2(1 + R̄(k1))(1 + 3R(k2)) + ωk2k1(1 + 3R̄(k1))(1 + R(k2)) = 0, (19)

and its complex conjugate. With equations (6) and (8), these two relations give

eiθ(k) = k + iα
√

k2 + m2

k − iα
√

k2 + m2
. (20)

Here α is a real constant. Thus, equation (16) admits nontrivial dependence of the transition
coefficients on k. It means that the junction point also may be considered as a nontrivial
scatterer, and this should be taken as an important feature of the ‘space’.

Another important conserved quantity is charge (or particle number) [22] related to the
current

j l = i(ϕ̄∂lϕ − ϕ∂lϕ̄), l = 0, 1. (21)

From equation (2), it follows that

∂0j0 − ∂1j1 = 0, (22)

and in analogy with equation (15), we obtain the second condition

j1(x)|x→0 + j1(y)|y→0 + j1(z)|z→0 = 0, (23)

or

ϕ̄(∂xϕ + ∂yϕ + ∂zϕ) − (∂̄xϕ + ∂yϕ̄ + ∂zϕ̄)ϕ|x=y=z=0 = 0. (24)

Like equation (16), this condition also follows from equation (4). Now we substitute solutions
(5), (18) into equation (24). The substitution of (5) gives again the unitarity condition (7);
however, the substitution of (18) results in

k2(1 + R̄(k1))(1 + 3R(k2)) + k1(1 + 3R̄(k1))(1 + R(k2)) = 0, (25)

or

eiθ(k) = k + iβ

k − iβ
, (26)

where β is a new real constant.
As we see from (20) and (26), the energy and charge are conserved simultaneously only

if

α = β = 0, (27)

or

α = β = ∞. (28)

In the first case,

R(k) = − 1
3 , T (k) = 2

3 . (29)

However, in the second case,

R(k) = −1, T (k) = 0. (30)

For T (k) = 0, the three strings behave as disjoints, and solution (30) is of little physical
interest. On the other hand, by substituting (5) into (4), we find that for monochromatic waves
condition (4) is equivalent to systems (16) and (24). Since both of these solutions are linear,
this equivalence is also true for a general solution (17). An outstanding feature of solution
(29) is its universality: it does not depend on k. This is important for modeling of 3D space
by a network composed of strings [4, 10].

We conclude that equation (4) represents the only nontrivial condition compatible with
the continuity condition (3), superposition principle and the conservation of both the energy
and charge.
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4. Harmonic oscillators network approximation

It is instructive to approximate our system by a harmonic oscillator network. In fact, it gives
an independent approach to the problem. The network is presented by three linear chains of
harmonic oscillators, described by variables ϕq,n, where n = 1, 2, . . . , q = x, y, z, and the
junction point oscillator described by ϕ0. The Lagrangian is given by

L = 1

2

∑
q

∑
n

[
ϕ̇2

q,n − 1

	2
(ϕq,n+1 − ϕq,n)

2 − m2ϕ2
q,n

]

+
1

2

[
ϕ̇2

0 − 1

	2

∑
q

(ϕ0 − ϕq,1)
2 − m2ϕ2

0

]
, (31)

where 	 is the lattice constant.
Two remarks are of principal importance.
1. Lagrangian (31) describes a classical system, so there are no problems with the structure

of space.
2. It describes a system with constraints. Indeed, the sites of oscillators on the plane are

fixed by coordinates qn : xn1 = n1	, yn2 = n2	, zn3 = n3	, so that ϕq,n(t) = ϕnq	(t), i.e.,
they belong to the semi-infinite lines. Thus, the system can be described in the framework
of Hamiltonian mechanics with constraints. It justifies the thin-tube approach [15–20] as a
version of the thin-layer method [8].

Lagrangian (31) gives the following equations of motion:

ϕ̈0 = 1

	2

( ∑
q

ϕq,1 − 3ϕ0

)
− m2ϕ0, (32)

ϕ̈q,1 = 1

	2
(ϕq,2 + ϕ0 − 2ϕq,1) − m2ϕq,1, (33)

ϕ̈q,n = 1

	2
(ϕq,n+1 + ϕq,n−1 − 2ϕq,n) − m2ϕq,n, n > 1. (34)

Their solution

ϕx,n(t) = e−i(ωkt+kn	) + R(k) e−i(ωkt−k	n),

ϕy,n(t) = ϕz,n(t) = (1 + R(k)) e−i(ωkt−kn	), (35)

ϕ0(t) = (1 + R(k)) e−iωkt

is analogous to (5). The normal frequencies

ω2
k = 4

	2
sin2 k	

2
+ m2, (36)

coincide with (6) in the limit 	 → 0.
Substituting (35) into (32) and taking into account the equation

ϕ̈0 + m2ϕ0 = − 4

	2
sin2 k	

2
(1 + R(k)) e−iωkt , (37)

we obtain [
4 sin2 k	

2
+ 3(eik	 − 1)

]
(R(k) + 1) = 2i sin k	. (38)

Since eik	 − 1 = 2i sin k	
2 cos k	

2 − 2 sin2 k	
2 and sin k	 = 2 sin k	

2 cos k	
2 , equation (38)

becomes (
3i cos

k	

2
− sin

k	

2

)
(R(k) + 1) = 2i cos

k	

2
, (39)
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or

eiθ(k) = − sin k	
2 + 3i cos k	

2

sin k	
2 − 3i cos k	

2

. (40)

Using (8), in the limit 	 → 0, we obtain for R(k) and T (k) solution (29).
We conclude
1. The junction plays the role of a universal scatterer.
2. It appears that probabilities (|R|2 + 2|T |2 = 1 equation (7)). Thus, the formulation

of CM (in particular, the Hamiltonian mechanics) not on a manifold demands introduction
into the formalism of additional assumptions (characteristics of the scatterer) and presumably
using the probability theory.
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